Ultra-High Foraging Rates of Harbor Porpoises Make Them Vulnerable to Anthropogenic Disturbance
نویسندگان
چکیده
The question of how individuals acquire and allocate resources to maximize fitness is central in evolutionary ecology. Basic information on prey selection, search effort, and capture rates are critical for understanding a predator's role in its ecosystem and for predicting its response to natural and anthropogenic disturbance. Yet, for most marine species, foraging interactions cannot be observed directly. The high costs of thermoregulation in water require that small marine mammals have elevated energy intakes compared to similar-sized terrestrial mammals [1]. The combination of high food requirements and their position at the apex of most marine food webs may make small marine mammals particularly vulnerable to changes within the ecosystem [2-4], but the lack of detailed information about their foraging behavior often precludes an informed conservation effort. Here, we use high-resolution movement and prey echo recording tags on five wild harbor porpoises to examine foraging interactions in one of the most metabolically challenged cetacean species. We report that porpoises forage nearly continuously day and night, attempting to capture up to 550 small (3-10 cm) fish prey per hour with a remarkable prey capture success rate of >90%. Porpoises therefore target fish that are smaller than those of commercial interest, but must forage almost continually to meet their metabolic demands with such small prey, leaving little margin for compensation. Thus, for these "aquatic shrews," even a moderate level of anthropogenic disturbance in the busy shallow waters they share with humans may have severe fitness consequences at individual and population levels.
منابع مشابه
Variation in harbour porpoise activity in response to seismic survey noise.
Animals exposed to anthropogenic disturbance make trade-offs between perceived risk and the cost of leaving disturbed areas. Impact assessments tend to focus on overt behavioural responses leading to displacement, but trade-offs may also impact individual energy budgets through reduced foraging performance. Previous studies found no evidence for broad-scale displacement of harbour porpoises exp...
متن کاملHarbour porpoises react to low levels of high frequency vessel noise
Cetaceans rely critically on sound for navigation, foraging and communication and are therefore potentially affected by increasing noise levels from human activities at sea. Shipping is the main contributor of anthropogenic noise underwater, but studies of shipping noise effects have primarily considered baleen whales due to their good hearing at low frequencies, where ships produce most noise ...
متن کاملImpacts of Underwater Noise on Marine Vertebrates: Project Introduction and First Results.
The project conducts application-oriented research on impacts of underwater noise on marine vertebrates in the North and Baltic Seas. In distinct subprojects, the hearing sensitivity of harbor porpoises and gray seals as well as the acoustic tolerance limit of harbor porpoises to impulsive noise from pile driving and stress reactions caused by anthropogenic noise is investigated. Animals are eq...
متن کاملβ-Diversity and Species Accumulation in Antarctic Coastal Benthos: Influence of Habitat, Distance and Productivity on Ecological Connectivity
High Antarctic coastal marine environments are comparatively pristine with strong environmental gradients, which make them important places to investigate biodiversity relationships. Defining how different environmental features contribute to shifts in beta-diversity is especially important as these shifts reflect both spatio-temporal variations in species richness and the degree of ecological ...
متن کاملHistory of expansion and anthropogenic collapse in a top marine predator of the Black Sea estimated from genetic data.
Two major ecological transitions marked the history of the Black Sea after the last Ice Age. The first was the postglacial transition from a brackish-water to a marine ecosystem dominated by porpoises and dolphins once this basin was reconnected back to the Mediterranean Sea (ca. 8,000 y B.P.). The second occurred during the past decades, when overfishing and hunting activities brought these pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 26 شماره
صفحات -
تاریخ انتشار 2016